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ensemble studies provides more accurate PF was largely confirmed by the experimental results 
making the case for continuing to investigate this issue.  

 

ABSTRACT 

     

In hydrology, projected climate change impact assessment studies typically rely on 

ensembles of downscaled climate model outputs. Due to large modeling uncertainties, the 

ensembles are often averaged to provide a basis for studying the effects of climate change. A key 

issue when analyzing averages of a climate model ensemble is whether to weight all models in 

the ensemble equally, often referred to as the equal-weights or unweighted approach, or to use a 

weighted approach, where, in general, each model would have a different weight. Many studies 

have advocated for the latter, based on the assumption that models that are better at simulating 
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the past, i.e., the models with higher hindcast accuracy, will give more accurate forecasts for the 

future and thus should receive higher weights. To examine this issue, observed and modeled 

daily precipitation frequency (PF) estimates for three urban areas in the United States, namely 

Boston, Massachusetts; Houston, Texas; and Chicago, Illinois, were analyzed. The comparison 

used the raw output of 24 Coupled Model Intercomparison Project Phase 5 (CMIP5) models. The 

PFs from these models were compared with the observed PFs for a specific historical training 

period to determine model weights for each area. The unweighted and weighted averaged model 

PFs from a more recent testing period were then compared with their corresponding observed 

PFs to determine if weights improved the estimates. These comparisons indeed showed that the 

weighted averages were closer to the observed values than the unweighted averages in nearly all 

cases. The study also demonstrated how weights can help reduce model spread in future climate 

projections by comparing the unweighted and weighted ensemble standard deviations in these 

projections. In all studied scenarios, the weights actually reduced the standard deviations 

compared to the equal-weights approach. Finally, an analysis of the results’ sensitivity to the 

areal reduction factor used to allow comparisons between point station measurements and grid-

box averages is provided. 

 

INTRODUCTION 

In many cities in the United States, heavy storms have become more frequent and 

stronger than those used to design the existing urban drainage infrastructure, causing more 

frequent floods. Moreover, climate studies suggest that heavy storms may become even more 

frequent and intense in the future (Douglas and Fairbank, 2011; Markus et al., 2012; Wuebbles et 

al., 2017; Um et al., 2017; Um et al., 2018; Li et al., 2019). Large metropolitan areas are 



particularly vulnerable to climate change because of the complex interaction between climate 

and urban environments (Zhang et al., 2018). To address the problem effectively, ensembles of 

model-generated data are often used to simulate the variability of modeling outputs for future 

scenarios and time horizons. When analyzing climate model ensembles, projections from 

multiple climate models are often aggregated into simple averages (USGCRP, 2018). A key 

issue, however, is whether to weight all models in an ensemble equally (unweighted approach), 

an approach often referred to as model democracy (Knutti, 2010), or to use a weighted approach, 

i.e., to assign different weights to the models when finding these averages. It can be assumed that 

since all models exhibit differences from each other, such as dynamic cores, parametrization, and 

model resolutions, some perform better in certain applications than others. Thus, a scheme in 

which these better performing models are given higher weights than the underperforming ones in 

theory would be better at predicting future climate than an unweighted average. The recent 

Fourth National Climate Assessment (NCA4: Wuebbles et al., 2017) addresses model weighting 

and recommends using a method to determine weights based on model performance (Sanderson 

and Wehner, 2017). Although in the NCA4 report it is assumed that the models that are better at 

predicting past climate will also perform better with future climates, complexities and 

uncertainties of weighted approaches also need to be considered (Sanderson et al. 2015). Since 

future performances are not known, hindcast accuracies are often used instead as a proxy for 

model fitness when determining weights. Thus, the models with better hindcast accuracies will 

receive higher weights in ensembles used for future projections. 

 Many studies have advocated for using a weighted model ensemble approach. Sanchez et 

al. (2009) and Räisänen and Ylhäisi (2012) both found that using weights improved their results. 

Masson and Knutti (2011) argued that often not all models in an ensemble are independent. 



Some models share a common underlying structure, but with slightly different parameters or 

resolutions, especially if the models come from the same institution. Model democracy does not 

account for these dependencies and can risk giving too much emphasis to a particular underlying 

model structure. Knutti et al. (2017) also argued that model democracy can allow poorer models 

to introduce biases and found that a weighting scheme based on both model performance and 

independence improved their results. Likewise, the NCA4 also used model skill and 

independence to determine their weights (Sanderson and Wehner, 2017; USGCRP, 2017). They 

found that weighting did not strongly influence mean projections, but they still recommended its 

use to guard against highly replicated but poorly performing models. 

 At the same time, there are some opposing viewpoints. Wiegel et al. (2010) pointed out 

that in order to use weights, accurate knowledge of each individual model’s skill is required, and 

unpredictable model noise must also be considered. If these uncertainties are not fully taken into 

account, weights could actually do more harm than good by making the ensemble perform more 

poorly. Wiegel et al. were concerned that this is a real possibility since there is no universal, 

objective consensus on how to find weights, so they suggested using equal weights to be safe. 

Christensen et al. (2010) experimented with how to determine model weights but in the end 

suggested that using weights was not beneficial. They argued that the subjective nature of 

determining weights and the associated uncertainties led to even more uncertainties during the 

weighting process itself. Hagedorn et al. (2005) argue that robust optimal weights are difficult to 

calculate given the short samples available to train the model.  

 The purpose of this study is to contribute to this debate by determining the benefits of 

weights by designing an experiment in which the observed data were divided into training 

(1961–2000 or 2005) and testing (2006–2018) data sets (Figure 1). The training period was 



selected to match the period of observed record used in climate model development, ending in 

the year 2000 or 2005, depending on the city. The testing period used the observed data not used 

in climate model development, starting with 2006 and ending with 2018, the last year of the 

observed record at the time of this study. The selection of the training and testing periods is 

related to the CMIP5 models settings, where the observed values for the external forcings such as 

concentrations of greenhouse gasses are used to force the climate models for the period of 1950-

2005 (referred to as the training period), while the projected values of external forcings are used 

to force the models for period of 2006-2100. It is the projection portion of the CMIP5 model 

output on which the weighted approach needs to be evaluated. Even though the testing period 

selected for the evaluation of weights is relatively short (2006-2018), the values used should be 

stable due to averaging large ensembles. Therefore, we leverage the latest observations to give a 

first test on CMIP5 model projections. This experiment allowed a cross-validation methodology 

to assess the performance of the weights determined in the training stage by applying them in the 

testing stage. This paper tests future projections based on a supervised method, i.e., when the 

projections are actually known. As more observations become available, we will be able to use 

longer periods for future studies. 

In the first step, weights were determined by comparing daily precipitation frequency 

(PF) estimates based on different climate models with those based on the training set of the 

observed data (Figure 1). Models with PF estimates closer to the observed ones received higher 

weights. These weights were then applied to the testing dataset to determine if they provide a 

more accurate approximation of the observed PF. If the weighted ensemble means were closer to 

the observed PF than the equal-weights ensemble mean, the weighted approach would be 

considered beneficial. Additionally, the approach with a smaller standard deviation of the model 



results was considered advantageous on account of the smaller variability in the model results. It 

was hypothesized that the addition of weights will provide a more accurate average PF and 

smaller model variability.  

 

Figure 1. Schematic of the method to determine the benefits of using weighted averages. 

 

The climate modeling data we used are based on the Climate Model Intercomparison 

Project Phase 5 (CMIP5) raw model output. Specifically, we employed 24 CMIP5 models to 

study three small climatically relatively homogeneous urban areas. These models were the same 

ones used to create the University of Wisconsin Probabilistic Downscaling (UWPD) dataset 

(Notaro et al., 2014; Wu et al., 2019).  To compare the model-generated grid-based precipitation 

data with those based on point observations, similar to Markus et al. (2018), the model data were 

multiplied by an inverse areal reduction factor based on the curves in Hershfield (1961). 

Inputs into our statistical models are the outputs from many climate models. The 

computations used high-throughput capabilities of the peta-scale Blue Waters high performance 

computing (HPC) system at the National Center for Supercomputing Applications (NCSA), 

where we were able to send each of these computational tasks to a different processing unit of 

Blue Waters. This extremely efficient computational workflow enabled us to experiment with 

different climate models and scenarios while tuning the weights of models and comparing 

numerous simulations. 

 



DATA 

 For this study, we focused on the areas around three large urban centers in the United 

States: Boston, MA, Houston, TX, and Chicago, IL. All three are adjacent to relatively large 

bodies of water (the Atlantic Ocean, the Gulf of Mexico, and Lake Michigan, respectively). 

Quasi-rectangular areas surrounding each city (Figure 2) were chosen for this study. These areas 

were selected to be small enough so that the climate would be relatively homogeneous across the 

entire area, yet big enough to include at least 10 weather stations, to minimize the effects of 

potential outliers. The areas selected for Boston and Houston are contained within one climate 

region each as defined by National Oceanic and Atmospheric Administration (NOAA) Atlas 14. 

The definition of the Chicago area is the same as in Markus et al. (2018). Table 1 lists the 

coordinates and other relevant data for each of these targeted areas. 

 The training period selected for Boston and Houston was 1960–2005 (46 years), as that 

was the historical period for the available data. Only those stations within the study target areas 

with at least 80% observed coverage during this period were selected (Figure 2) (Wu et al., 

2019), with data from NOAA used in the development of Atlas 14. For Chicago, the selected 

stations were a subset of those used in Markus et al. (2017) from the Global Historical 

Climatology Network Daily (GHCND). Markus et al. (2017) looked at observations from 1961 

to 2000 (40 years). That same period was selected here as the training period to take advantage 

of the already prepared observational datasets from that study. Station data for Chicago were 

manually checked, and only those with at least 80% completeness for 1961–1980 and at least 

70% completeness for 1981–2000 were retained. As a result, 15 of the 30 stations were selected 

(Figure 2). 



Following Markus et al. (2017) and the NCA4 (USGCRP, 2017), we employed model 

data for this period from two Representative Concentration Pathways (RCPs): RCP4.5 and 

RCP8.5. RCP4.5 represented a low-end emission scenario, while RCP8.5 represented a high-end 

one, as recommended in the NCA4. While the differences between the two scenarios might not 

be large for the selected testing period, these scenarios were selected because they have different 

numbers of available climate models and some differences in the results are expected. Observed 

data for this period were obtained using the Midwestern Regional Climate Center’s Application 

Tools Environment (cli-MATE) (https://mrcc.purdue.edu/CLIMATE/welcome.jsp, last accessed 

10/31/2019). However, not all stations used during the training periods had data readily available 

for the testing period on cli-MATE, sometimes because observations at a station ended before or 

during the testing period. Thus, the stations with partial or incomplete records were removed, so 

some stations ended up being used for training but not for testing (as shown in Figure 2).  

For all three cities, the testing period was selected to be 2006-2018 (13 years). It should 

be noted that the testing period analysis for Houston was performed twice, once with 2017 and 

once without 2017 in both the models and observations. This is because of Hurricane Harvey 

(Emanuel, 2017), which affected the Houston area in late August 2017 and produced extremely 

high daily rainfall amounts well over 10 inches for many stations. Including such an extreme 

event in such a short time interval strongly influences the observed PFs, especially for longer 

return periods. This influence is not seen in the climate model data, leading to large disparities 

between the observed and modeled PFs. The results will show the effects of the year 2017.  

 

Table 1. The regions and time periods selected for this study. 

 

https://mrcc.purdue.edu/CLIMATE/welcome.jsp


Figure 2. Location of selected training period stations for Boston (top), Houston (center), and 
Chicago (bottom).  

 

The modeled data used were the raw CMIP5 data, consisting of the same 24 models that 

were used to create the UWPD dataset (Table 2). These models have different resolutions, with 

some having only a couple of grid points in each region. The closest model grid point was 

selected for comparison with each station for each model; however, these grid points were not 

always in the observed regions in Table 1. Thus, slightly larger regions (the second row in Table 

1) were used for the models to ensure that the closest model grid point to each station in the 

observed region was included in the analysis. Finally, two models (CMCC-CESM and MRI-

ESM1) did not have RCP4.5 data available, so two sets of weights for each city needed to be 

found: one without those models for RCP4.5 and one with them for RCP8.5. This is necessary as 

the weights for each scenario should average to 1, so removing models may affect the weights of 

the remaining ones. 

For all grid cells, due to their large (greater than 1,000 square kilometers) and highly 

variable size (Table 2), a constant reduction factor of 0.90 was assumed based on Hershfield 

(1961) and the Technical Paper 29 (U.S. Weather Bureau, 1957), producing an inverse areal 

reduction factor (ARF) equal to 1.11. However, several later studies (Sivapalan and Blöschl, 

1998; Allen and DeGaetano, 2005) indicated that the ARFs in Hershfield (1961) were too high. 

The reduction factors in the Technical Paper 29 were even higher, probably due to the 

assumption of constant ARF for large areas. To accommodate the recommendations from 

Sivapalan and Blöschl (1998) and Allen and DeGaetano (2005), two other lower ARF values, 

0.80 and 0.67, were also calculated to assess the sensitivity of results based on the uncertain areal 

reduction factors resulting from variable grid-cell size for different models. 



Table 2. The 24 CMIP5 models used in this study along with their grid-cell sizes (latitude × 
longitude). No RCP4.5 data were available for models with an (*). 

 

METHODOLOGY 

 The initial step in the methodology of this study (Figure 3) is adopted based on NOAA 

Atlas 14 (Perica et al. 2018; 2019), where PFs were estimated based on L-moments (Hosking 

and Wallis, 1997) applied to the annual maximum series (AMS) and corrected by the Langbein 

(1949) formula. The AMS for a location is the series of the single largest 24-hour precipitation 

values for each year (the annual maximum) in the period of interest at that location. In the 

training period for each city, for each weather station, the observed data were used to find the 

AMS. Likewise, the AMS (corrected by inverse ARF) were found at each of the model grid 

points in the modeled region from the daily model-generated precipitation data for each of the 

models in Table 2. From these AMS, PFs were found at each location using L-moments to fit the 

data to generalized extreme value (GEV) distributions. The return periods used were 2, 5, 10, 25, 

50, and 100 years, which, after applying Langbein’s (1949) formula for AMS, became 2.54, 

5.52, 10.51, 25.50, 50.50, and 100 years, respectively. The model weights were then determined 

based on the similarity between the observed PFs at each station and the modeled PFs at the 

closest model grid point to each station for each model. Similar to Markus et al. (2018), a percent 

difference was found at each station for each model/return period combination: 

% 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  
(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃− 𝑂𝑂𝑂𝑂𝑂𝑂 𝑃𝑃𝑃𝑃)

𝑂𝑂𝑂𝑂𝑂𝑂 𝑃𝑃𝑃𝑃
.  (1) 

  Once these differences were found, they were averaged for each model across all stations 

within a city domain and return periods, resulting in a single value, di, for each of the 24 models. 



The model weights can be derived from this set of di, but here we deviated a bit from Markus et 

al. (2018) by using a variation of Tukey’s (1977) formula: 

𝑤𝑤𝑖𝑖 = �(1− �
𝑑𝑑𝑖𝑖
ℎ
�
3

)3, 𝑖𝑖𝑖𝑖 |𝑑𝑑𝑖𝑖| ≤ ℎ

0,                     𝑖𝑖𝑖𝑖 |𝑑𝑑𝑖𝑖| > ℎ
(2) 

Whereas h is commonly the standard deviation of the set of di, here we instead took it to be their 

standard deviation from 0, not their mean: 

ℎ = �∑ 𝑑𝑑𝑖𝑖
2

𝑖𝑖

𝑛𝑛
(3) 

where n is the number of models used (here 24 for RCP8.5, 22 for RCP4.5). This was done 

because most of the di for each of the cities were large and negative, meaning that many of their 

absolute values were greater than their standard deviation and, thus, the weights for those models 

would be 0. This is different from the more typical case for Tukey’s formula where the values 

are more evenly distributed around 0. After finding the weights for each model using Eq. 2, they 

were then normalized so that their mean was 1. 

 Next, observed and modeled PFs for the testing period were found in the same way as in 

the training period. For each station and return period combination, the PFs of the closest grid 

point for each model were averaged across all 24 models (or 22 for RCP4.5), once using the 

weights found in the training period and once using equal weights. These averages could then be 

compared with their corresponding observed PFs to see whether using weights made a 

significant improvement overall over using equal weights. 

 



Figure 3. Steps in determining the weights (training) and evaluating the methodology (testing) 

 

It was also necessary to investigate both the weighted and unweighted standard 

deviations of the model PFs for a period.  To do so we find the PFs for that period and emission 

scenario at the grid points within the modeled regions in Table 1 for the appropriate city, and 

then average them spatially. The result for each city–time–emission scenario–return period 

combination is one average PF for each model, xi. The unweighted standard deviation of these 24 

(22 for RCP4.5) xi, σu, is found in the typical way. From Rimoldini (2014), the equation for the 

weighted standard deviation of the xi is 

𝜎𝜎𝑤𝑤 = �
𝑉𝑉12

𝑉𝑉12 − 𝑉𝑉2
𝑘𝑘2  (4) 

where  

𝑉𝑉𝑝𝑝 = �𝑤𝑤𝑖𝑖
𝑝𝑝

𝑛𝑛

𝑖𝑖=1

,     𝑝𝑝= 1, 2;          𝑘𝑘2 =
1
𝑉𝑉1
�𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛

𝑖𝑖=1

;           𝜇𝜇 =
1
𝑉𝑉1
�𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

. 

Like before, wi are the weights, and n is the number of models. 

 

RESULTS 

 Table 3 lists the weights found for each model for each city for ARF=0.90, ARF=0.80, 

and ARF=0.67, respectively. The presented weights were averaged for the two climate scenarios 

(RCP8.5 and RCP4.5), as the difference between those scenarios on model weights was found to 

be insignificant. For the two models with only RCP8.5 data (CMCC-CESM and MRI-ESM1), 



the weight for the RCP8.5 scenario is presented instead. Also, because the two scenarios are 

averaged together, the weights in a column of the table may not necessarily average to exactly 1. 

All models generally showed a relatively high degree of consistency across the three regions and 

for all three ARF values. Models showing high (greater than 1.5) average weights (Figure 4) for 

the three sites, three ARF values, and two climate scenarios, included ACCESS1-0, ACCESS1-

3, CMCC-CM, HadGEM2-CC, IPSL-CM5A-MR, IPSL-CM5B-LR, and MRI-ESM1. On the 

other hand, several models had zero weights in all cases (e.g., CMCC-CESM, inmcm4, MIROC-

ESM, MIROC-ESM-CHEM and NorESM1-M), possibly explained by the large spread of the di 

and the large dry biases of some of the models.  

Table 4 shows the weighted and unweighted percent differences (Eq. 1) for each ARF 

averaged across all return periods and stations for Boston, Houston with the complete record, 

Houston without the hurricane year (2017), and Chicago. All results in Table 4 are presented for 

two assumed climate scenarios (RCP4.5 and RCP8.5) and applied to the testing period (2006–

2018). The negative values in Table 4 indicate that the models on average underestimate the 

observed frequency estimates (dry bias). Small absolute values of the differences indicate that 

the models are accurate and vice versa. In 23 of the 24 cases in Table 4 (except for Boston for 

RCP4.5 and ARF=0.80, shown in bold numbers), the percent differences for the weighted 

approach were smaller in absolute value than those of the equal-weights approach, indicating that 

the weighted approach produced more accurate results than that with equal weights. Houston and 

Chicago have dry biases in all cases, while that is not the case for Boston, where the signs of the 

errors are positive in some cases. The weighted percent differences for the testing period 

averaged for all cases, as shown in the bottom row in Table 4, are about a half of the equal-

weights case for both scenarios, highlighting the benefits of weights. 



 

Table 3. Climate model weights averaged for climate scenarios RCP4.5 and RCP 8.5 for 
ARF=0.90, 0.80, and 0.67. 

 

Figure 4. Weights for each climate model averaged for the three geographic locations, three 
ARFs, and two climate scenarios. 

 

Table 4. Weighted and unweighted percent differences of PFs (Eq. 1) averaged across all return 
periods and stations in the testing period (2006–2018) for ARF=0.90, 0.80, and 0.67.  

 

 In addition to the steps shown in the flowchart (Figure 3), another testing of the method 

has been performed to assess the effects of weights by comparing weighted and unweighted 

ensemble spreads. The weights were found to reduce spread in the training stage because the 

weighting scheme removes very inaccurate models (outliers). As a result of removing outliers, 

the weighted standard deviation in the training stage was typically smaller than that of the equal-

weights case. To test the consistency of weights for different periods, it was examined if the 

same will hold for the testing stage. It was examined whether the models deemed “good” in the 

training stage, will also remain grouped together around the mean (or relatively close to the 

mean) in the testing stage, and similarly if the bad models in the training stage will remain poor-

performing models (outliers) in the testing stage. The standard deviations of the model data for 

two periods in the future, both with and without weights, were compared to investigate if the 

weights can reduce ensemble spread in future climate projections. It can be speculated that the 

consistency in model weights in training and testing periods, i.e., reduced weighted ensemble 

spread compared to the equal weights option, would support the assumption that past 

performance is an indication of future accuracy. Only relative effects of weights were examined, 



while other sources of variability in model performances, e.g. natural variability over short time 

periods and variability of the future climate, were not analyzed in this research. 

Similar to Wu et al (2019), to get an approximate estimate of the changes in the 21st 

century, we split the available future model data (2006–2100) into two approximately equal 

periods, 2006–2053 and 2054–2100. We find both the weighted and unweighted standard 

deviations, σw and σu, of the PFs for each period using the technique described at the end of the 

Methodology section and Eq. 4. The statistical quantity selected for this test was the percent 

reduction (PR), expressed as  

           𝑃𝑃𝑃𝑃 (%) = (
𝜎𝜎𝑤𝑤 − 𝜎𝜎𝑢𝑢
𝜎𝜎𝑢𝑢

) × 100.              (5) 

A negative PR indicates that the weighted approach resulted in a smaller standard 

deviation; zero means that the standard deviations are equal; and a positive PR means that the 

weights increased the standard deviation. The results for ARF=0.90, ARF=0.80, and ARF=0.67 

are presented in Table 5. The results show that the PR was negative, ranging between -61.6% 

and -6.7%, for all cases with the average of -37.0%, meaning that the weighted standard 

deviations are smaller than the unweighted ones and that the weights successfully reduced the 

projected model spread.  

 The relative increases in precipitation frequency estimates based on this study are 

illustrated in Figure 5, where the locations and climate scenarios are included in the title for each 

subplot. Names in the legend start with “U” (unweighted method) or “W” (weighted method) 

and end with “mid” (2006-2053) or “late” (2054-2100), representing the first and the second 

halves of the 21st century respectively, and the changes with respect to “present” time (1960-

2005). For example, “Umid” denotes the results for the mid-21st century using the unweighted 



ensemble approach. The expected frequency estimates increase with time, i.e., late-century 

frequency estimates are larger than those of mid-century, meaning that heavy storms will 

continue to increase throughout the century. The values for RCP8.5 are also typically higher than 

those of RCP4.5. The projected increases are generally larger for the weighted approach. Large 

differences between the weighted and equal-weights signify the importance of the decision to 

either select the weighted approach or adopt equal weights. This difference is small for Chicago 

RCP8.5 mid- and late-century statistics, but it is very significant for Houston RCP4.5 late-

century statistics, where the 100-year event is about 50% higher for some return periods when 

variable weights are used.  

 

Table 5. Percent reduction (PR) values comparing weighted vs. unweighted ensembles spread 
according to Eq. 5.  
 

Figure 5. Projected relative percent increases in heavy storm events at three selected sites.  

 

CONCLUDING REMARKS 

The experiment described in this study was based on several key assumptions. The range 

of results based on uncertain future emission scenarios was represented by using RCP4.5 and 

RCP8.5 as in many other studies (Wuebbles et al., 2017), but structural (model) and data 

uncertainties were not explored herein. There are potential issues in ensemble analyses when the 

models are correlated (Knutti et al., 2010; Steinschneider et al., 2015); nonetheless, in this study 

it was assumed that the model results are independent. It appears that this assumption would be 

less problematic for extreme precipitation, for which the correlations among different models 



were weak, even for very similar models. Additional insights on this issue were offered by 

Wuebbles et al. (2017) and Shortridge and Zaitchik (2018).  

The study is limited given the small number of years in both the training and testing 

historical periods producing large variability in the results (which may have been alleviated by 

averaging large ensembles). A relatively small number of stations and model grid points were 

used as well. More of all of these would help improve and strengthen the conclusions, especially 

more model grid points, so that each grid point maps to only one station. Having multiple sets of 

raw data would also allow more models to have positive weights by finding the weights for each 

set and then averaging them. Finally, the results are specific to one selected method for 

determining weights. Different methods would certainly result in different weights, which is an 

aspect that requires further exploration. 

A critical factor contributing to the results of this study is the assumed ARF. The initial 

ARF adopted for this study matched that in the recent NOAA Atlas 14 publications (e.g. Perica 

et al., 2018). The value of 0.90 used in this study was obtained by extrapolating the original 

Hershfield (1961) curve to the size of the grid cells of the climate models. Many researchers 

found these curves to be very uncertain (Pavlovic et al., 2016) and deemed too high (Sivapalan 

and Blöschl, 1998; Allen and DeGaetano, 2005), prompting the addition of two lower ARF 

curves that might be more appropriate for this problem. ARF=0.80 and ARF=0.67 were assumed 

conveniently to produce inverse values of 1.25 and 1.50, respectively. Although different ARFs 

produced variable results, the application of weights resulted in a significant reduction in percent 

difference between observed and model-based precipitation frequency estimates, regardless of 

the adopted ARF (Table 4). Weighted results consistently outperformed the unweighted ones, 

indicating that the past performance can be an indication of future accuracy. Models that were 



more accurate in the training stage were typically more accurate in the testing stage and vice 

versa. Additionally, application of weights resulted in reduced standard deviation among the 

projected ensemble members, thereby potentially reducing the confidence limits of the future 

projections. Moreover, these models tended to have similar performances at all three geographic 

locations. 

Despite the simplifications, limitations, and uncertainties of the proposed approach, the 

hypothesis that the addition of weights will provide a more accurate average PF and smaller 

model variability was largely confirmed by the experimental results. This study makes the case 

for continuing to investigate the use of weights and demonstrates that they can have value and 

could prove to be useful tools when studying future climate. 
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Table 1. The regions and time periods selected for this study. 

City Boston, MA 
 

Houston, TX Chicago, IL 

Coordinates of 
Observed Region 

 

42-43°N × 
70.5-72°W 

28.5-30.5°N × 
94-96°W 

41-43°N × 
87-88.5°W 

Coordinates of 
Modeled Region 

 

41-44°N × 
70-73.2°W 

27.8-31.6°N × 
92.8-97.6°W 

40-44°N × 
86-90°W 

# of Stations in 
Training Period 

 

35 40 15 

# of Stations in 
Testing Period 

 

22 23 11 

Training Period 1960-2005 
(46 years) 

 

1960-2005 
(46 years) 

1961-2000 
(40 years) 

Testing Period 2006-2018 
(13 years) 

 

2006-2018 
(13 years); 

2006-2016, 2018 
(12 years) 

 

2006-2018 
(13 years) 

 

 

 

 

  



Table 2. The 24 CMIP5 models used in this study along with their grid-cell sizes (latitude × 
longitude). No RCP4.5 data were available for models with an (*). 

Model Grid-Cell Size Model Grid-Cell Size 
ACCESS1-0 1.25° × 1.875° inmcm4 1.5° × 2° 
ACCESS1-3 1.25° × 1.875° IPSL-CM5A-LR 1.8948° × 3.75° 
CanESM2 2.7904° × 2.8125° IPSL-CM5A-MR 1.2676° × 2.5° 
CMCC-CESM* 3.75° × 3.75° IPSL-CM5B-LR 1.8948° × 3.75° 
CMCC-CM 0.75° × 0.75° MIROC5 1.4007° × 1.4063° 
CMCC-CMS 1.8651° × 1.875° MIROC-ESM 2.7904° × 2.8125° 
CNRM-CM5 1.4007° × 1.4063° MIROC-ESM-CHEM 2.7904° × 2.8125° 
CSIRO-Mk3-6-0 1.8651° × 1.875° MPI-ESM-LR 1.8651° × 1.875° 
GFDL-CM3 2° × 2.5° MPI-ESM-MR 1.8651° × 1.875° 
GFDL-ESM2G 2.0225° × 2.5° MRI-CGCM3 1.1215° × 1.125° 
GFDL-ESM2M 2.0225° × 2.5° MRI-ESM1* 1.1215° × 1.125° 
HadGEM2-CC 1.25° × 1.875° NorESM1-M 1.8948° × 2.5° 

 

  



Table 3. Climate model weights averaged for climate scenarios RCP4.5 and RCP 8.5 for 
ARF=0.90, 0.80, and 0.67. 

 

Climate Model ARF=0.90 ARF=0.80 ARF=0.67 

B
os

to
n 

H
ou

sto
n 

C
hi

ca
go

 

B
os

to
n 

H
ou

sto
n 

C
hi

ca
go

 

B
os

to
n 

H
ou

sto
n 

C
hi

ca
go

 

ACCESS1-0 2.98 5.23 2.73 1.58 5.01 2.87 0.00 4.32 2.34 
ACCESS1-3 2.03 6.72 2.06 2.20 5.99 2.38 0.44 4.48 2.34 
CanESM2 2.27 0.00 1.34 2.22 0.00 1.76 0.08 0.00 2.29 
CMCC-CESM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CMCC-CM 2.93 2.35 3.96 2.06 2.60 3.51 0.00 3.12 2.10 
CMCC-CMS 0.73 0.00 0.84 1.52 0.00 1.23 3.28 0.00 2.15 
CNRM-CM5 2.28 0.28 0.02 2.22 0.39 0.07 0.06 0.76 0.71 
CSIRO-Mk3-6-0 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 
GFDL-CM3 0.00 0.00 0.00 0.00 0.00 0.00 3.02 0.00 0.00 
GFDL-ESM2G 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 
GFDL-ESM2M 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 
HadGEM2-CC 1.73 3.27 0.43 2.13 3.45 0.72 1.16 3.67 1.83 
inmcm4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
IPSL-CM5A-LR 0.00 0.00 0.00 0.00 0.00 0.01 2.77 0.00 0.41 
IPSL-CM5A-MR 1.90 0.09 3.59 2.18 0.13 3.35 0.73 0.32 2.23 
IPSL-CM5B-LR 2.96 3.86 5.67 1.89 3.95 3.83 0.00 3.94 0.07 
MIROC5 1.57 0.05 1.74 2.08 0.07 2.12 1.60 0.20 2.33 
MIROC-ESM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MIROC-ESM-CHEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MPI-ESM-LR 0.02 0.00 0.03 0.26 0.00 0.09 3.64 0.00 0.78 
MPI-ESM-MR 0.00 0.00 0.15 0.00 0.00 0.32 0.68 0.00 1.33 
MRI-CGCM3 0.91 0.44 0.08 1.68 0.58 0.19 3.04 1.04 1.08 
MRI-ESM1 1.44 1.46 0.81 2.00 1.70 1.19 1.99 2.32 2.11 
NorESM1-M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

  



Table 4. Weighted and unweighted percent differences of PFs (Eq. 1) averaged across all return 
periods and stations in the testing period (2006–2018) for ARF=0.90, 0.80, and 0.67.  

 
 

RCP4.5 RCP8.5 
 

 
Weighted Unweighted Weighted Unweighted 

ARF=0.90 Boston 5.86% -17.60% -8.94% -24.84% 
Houston with 2017 -43.85% -62.28% -39.97% -61.58% 
Houston without 2017 -33.21% -55.20% -29.28% -54.98% 
Chicago -20.11% -38.46% -19.60% -35.41% 

ARF=0.80 Boston 13.66% -7.21% -0.27% -15.36% 
Houston with 2017 -37.28% -57.52% -33.23% -56.73% 
Houston without 2017 -25.38% -49.55% -21.32% -49.30% 
Chicago -12.71% -30.69% -12.16% -27.27% 

ARF=0.67 Boston 5.96% 11.35% 0.11% 1.57% 
Houston with 2017 -26.42% -49.02% -22.50% -48.08% 
Houston without 2017 -12.46% -39.46% -8.73% -39.16% 
Chicago -4.15% -16.83% -2.30% -12.72% 

Average Average -15.84% -34.37% -16.52% -35.32% 
  

  



Table 5. Percent reduction (PR) values comparing weighted vs. unweighted ensembles spread 

according to Eq. 5.  

  Boston Houston Chicago 

  2006-2053 2054-2100 2006-2053 2054-2100 2006-2053 2054-2100 

Climate Scenario 

R
C

P4
.5

 

R
C

P8
.5

 

R
C

P4
.5

 

R
C

P8
.5

 

R
C

P4
.5

 

R
C

P8
.5

 

R
C

P4
.5

 

R
C

P8
.5

 

R
C

P4
.5

 

R
C

P8
.5

 

R
C

P4
.5

 

R
C

P8
.5

 

A
R

F=
0.

90
 

R
et

ur
n 

Pe
rio

d 
(y

ea
rs

) 

2 -41.0 -29.4 -37.7 -39.8 -54.1 -28.2 -41.8 -47.9 -21.2 -16.2 -25.6 -8.2 

5 -40.9 -32.6 -38.8 -33.6 -59.8 -35.2 -49.5 -55.8 -24.6 -20.2 -28.3 -15.2 

10 -39.5 -31.9 -38.1 -27.6 -61.6 -41.3 -53.5 -59.1 -27.0 -23.9 -29.5 -20.2 

25 -36.5 -28.4 -35.7 -19.1 -60.4 -48.6 -56.8 -57.9 -30.0 -29.1 -30.0 -26.8 

50 -33.6 -24.8 -32.9 -12.7 -57.2 -52.2 -57.9 -53.4 -32.1 -33.1 -29.6 -31.7 

100 -30.4 -20.8 -29.8 -6.7 -52.8 -53.6 -57.9 -47.0 -33.9 -37.0 -28.6 -36.4 

A
R

F=
0.

80
 

R
et

ur
n 

Pe
rio

d 
(y

ea
rs

) 

2 -41.6 -33.6 -37.8 -40.6 -51.3 -27.6 -39.9 -45.3 -24.1 -19.5 -26.2 -9.8 

5 -40.2 -34.8 -37.3 -35.0 -56.8 -34.3 -47.3 -52.9 -26.5 -22.7 -28.1 -15.7 

10 -38.3 -32.9 -36.1 -30.0 -58.5 -40.2 -51.1 -56.2 -28.1 -25.8 -28.5 -20.3 

25 -34.9 -28.3 -33.6 -23.1 -57.4 -47.0 -54.4 -55.6 -30.1 -30.3 -28.0 -26.5 

50 -31.9 -24.0 -31.1 -18.1 -54.5 -50.4 -55.6 -51.5 -31.4 -33.8 -26.9 -31.2 

100 -28.9 -19.5 -28.4 -13.5 -50.3 -51.7 -55.8 -45.6 -32.6 -37.1 -25.3 -35.6 

A
R

F=
0.

67
 

R
et

ur
n 

Pe
rio

d 
(y

ea
rs

) 

2 -21.7 -43.2 -22.1 -46.0 -42.0 -24.7 -32.6 -36.8 -43.3 -40.1 -36.7 -22.6 

5 -22.9 -44.6 -25.4 -47.5 -47.4 -30.9 -39.2 -44.0 -42.6 -41.1 -36.8 -25.9 

10 -23.9 -45.3 -27.8 -48.6 -49.4 -36.4 -43.0 -47.8 -41.6 -41.7 -35.6 -28.9 

25 -24.8 -45.0 -30.6 -48.9 -49.1 -42.6 -46.6 -48.7 -40.1 -42.6 -32.9 -33.2 

50 -25.1 -43.8 -32.4 -47.8 -47.0 -45.6 -48.3 -46.3 -38.9 -43.1 -30.3 -36.3 

100 -25.0 -41.9 -33.8 -45.8 -43.7 -46.7 -49.1 -41.9 -37.7 -43.5 -27.5 -38.9 

 

  



List of Figures: 

Figure 1. Schematic of the method to determine the benefits of using weighted averages. 

Figure 2. Location of selected training period stations for Boston (top), Houston (center), and 
Chicago (bottom). 

Figure 3. Steps in determining the weights (training) and evaluating the methodology (testing). 

Figure 4. Weights for each climate model averaged for the three geographic locations, three 
ARFs, and two climate scenarios. 

Figure 5. Projected relative percent increases in heavy storm events at three selected sites.  

 



Determining weights by comparing 
model-based frequency estimates with 
those based on observations from 1961 
to 2005 for Boston and Houston and 
from 1961 to 2000 for Chicago

Weights

Testing if the weights improve 
model derived frequency 
estimates when comparing to 
observed data from 2006 to 2018 
for all three cities
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